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ABSTRACT 

Let m be a fixed non-negative integer. In this work we try to answer the 

following question: What can be said about a (finite) group G if all of its 

irreducible (complex) characters vanish on at most m conjugacy classes? 

The classical result of Burnside about zeros of characters says that G is 

abelian if m --- 0, so it is reasonable to expect that the structure of G 

will somehow reflect the fact that the irreducible characters vanish on a 

bounded number of classes. The same question can also be posed under 

the weaker hypothesis that some irreducible character of G has m classes 

of zeros. For nilpotent groups we shall prove that the order is bounded 

by a function of m in the first case but only the derived length can 

be bounded in general under the weaker condition. For solvable groups 

the situation is not so well understood although we shall prove that the 

Fitting height can be bounded by a double logarithmic function of m, 

improving a recent result by G. Qian. 
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1. I n t r o d u c t i o n  

Let G be a non-abelian finite group. For every X E Irr(G) we put 

m(~) = [{C E cl(G) [ X(x) = 0 for x E C}[, 

where cl(G) denotes the set of conjugacy classes of G. 

Let m(G) = maxxEirr(G ) m0( ) and n(G) = minxEirrl(G ) rrt(X), where Irrl(G) 

stands for the set of non-linear irreducible characters of G. A number of papers 

have been devoted to the study of the zeros of the characters of a finite group. 

In particular, in a very recent paper G. Qian [24] proves that  the Fitting height 

h(G) of a solvable group G is bounded by a linear function of m(G). In this work 

our aim is twofold: trying to improve Qian's result both quantitatively (giving 

a more realistic bound for the Fitting height) and qualitatively (substituting 

the Fitting height by some other group invariant like the derived length or the 

order or replacing re(G) by n(G)). In the first direction, using information from 

[20], we obtain the following result. 

THEOREM A: Let G be a solvable group and write F~(G) (simply F(G) for 

i -- 1) to denote the ith term in the Fitting series of C. Then 

(i) There exist real numbers C1 and C2 such that h( G) <_ C1 log log m (G) + 6'2 

whenever re(G) > 1. 

(ii) [G : Flo(G)[ is bounded in terms of re(G). 

(iii) If  [F10(G)[ is odd, then ]G : F(G)[ is bounded in terms of re(G). 

Parts (ii) and (iii) of this theorem are actually examples of our second goal. 

We believe that  it is possible to improve Qian's result also qualitatively, however 

our results in this direction refer mostly to nilpotent groups. (Actually, we will 

just state these results for p-groups and it will always be clear how to extend 

them to nilpotent groups.) For instance, we have the following. 

THEOREM B: Let P be a finite non-abelian p-group. Then [PI is bounded by 

some function that depends only on re(P). 

As dihedral groups of order 2m show, the order of a non-abelian supersolvable 

group cannot be bounded in terms of re(G), so this result cannot be pushed 

further. 

Much effort has been devoted to finding good lower bounds for the number of 

conjugacy classes of a finite group in terms of the order of the group (see [23], 

for instance). This result shows that  for nilpotent groups it is possible to bound 

the group order by the number of certain conjugacy classes. While we do not 

give explicit bounds, it is possible to obtain them just by following the proofs. 
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A classical theorem of W. Burnside asserts that  any non-linear character of a 

finite group vanishes at some element. Our next result shows that  for p-groups 

there always exists more than one conjugacy class of zeros of any non-linear 

character. 

THEOREM C: Let X be a non-linear irreducible character of a finite p-group P of 

degree p n. Then re(X) is a multiple of p -  1 bigger than or equal to ( p + n ) ( p -  1). 

In particular, m()c) > p2 _ 1. 

The last inequality is best possible, as extraspecial p-groups of order p3 show. 

We will see that  there are 2-groups and 3-groups of arbitrarily large order with 

faithful characters that  vanish on exactly 3 and 8 conjugacy classes, respectively, 

so it is not possible to bound the order of a p-group P in terms of n(P) for p _~ 3. 

Rather surprisingly, the order of a p-group with an irreducible character van- 

ishing on exactly p2 _ 1 conjugacy classes is bounded (by a function depending 

on p only) if p _> 5. 

THEOREM D: Let p ~_ 5 be a prime number and P a p-group. Suppose that 

there exists X E I r r (P)  such that rn(x ) = p2 _ 1. Let r be the smallest prime 

that does not divide p - 1. Then IP[ <_ per-1 and, moreover, this bound can be 

improved to IPf <_ pr+l i f  x is faithful 

We will see that the bound that  we have obtained in the faithful case is best 

possible for all but finitely many primes. In order to check this we will need 

some results on the so-called permutation polynomials. These results are proved 

in Section 2. 

In view of this result it is tempting to conjecture that  for p _> 5 the order of a 

p-group P is bounded in terms of n(P).  However, we shall show that  there are 

p-groups with arbitrarily large order and an irreducible character vanishing on 

exactly ( p -  1)! + p2 _ p  classes. These groups also have unbounded nilpotenee 

class (they are of maximal class) though they are metabelian. The next theorem 

shows that  it is not possible to find p-groups P with arbitrarily large derived 

length and fixed n(P).  

THEOREM E: Let P be a finite p-group. Then the derived length of P is 

bounded by some function that depends only on n(P).  

We will show in Section 6 that  it is not possible to bound the derived length 

of a solvable group G in terms of n(G). We conjecture the following. 

CONJECTURE F: If  G is solvable, then dl(G) and [G : F(G)[ are bounded in 

terms of re(G). 
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Note that the second statement of this conjecture has been proved for odd 

order groups in Theorem A. We will also see that it is not possible to bound 

the index IG : F(G)I in terms of n(G). However, we conjecture the following. 

CONJECTURE G: The Fitting height of a solvable group G is bounded in terms 

ofn(a). 

We shall prove this conjecture when n(G) = 1. 

As proved by D. Chillag in [4] and independently by Y. Berkovich and 

L. Kazarin in [1], re(G) = 1 if and only if G is a Frobenius group with comple- 

ment of order 2 and abelian kernel of odd order. In particular, Conjecture F 

holds if re(G) = 1. Groups G with re(G) = 2 were studied in [2] and it follows 

from Theorem 1.1 of that paper that Conjecture F also holds in this case. We 

have taken the study of these groups further and, with the help of the detailed 

information of these groups given in Theorem 1.1 of [2], we have obtained a 

complete classification of them. 

THEOREM H: Let G be a finite group. Then m(G) = 2 if and only if G is 

isomorphic to one of the following groups: 

(i) The symmetric group $4. 

(ii) The alternating group A5. 

(ii) The projective special linear group PSL(2, 7). 

(iv) An extension of a group of order 2 by a Frobenius group with complement 

of order 2 and abelian kernel of odd order. 

(v) A Frobenius group with complement of order 3 and abelian kernel. 

We have also been able to prove Conjecture F for supersolvable groups. It 

might be true that the derived length of a solvable group is bounded by some 

function of m(x) for any faithful irreducible character )C. An easy subdirect 

product argument shows that this would imply Conjecture F. 

Next, we explain the way our results are distributed in the paper. In Section 

2 we review some results on permutation polynomials that will be useful in 

Section 4, where we prove Theorem D. Section 3 is devoted to the proof of 

Theorem C. We prove Theorem B in Section 5. Finally, we present some results 

on bounding the derived length by the number of classes of zeros in Section 6 

and those on the Fitting height in Section 7. 

ACKNOWLEDGEMENT: We thank G. A. Fern~ndez-Alcober, R. Guralnick, 

M. Isaacs, A. Mann and M. Zieve for helpful comments. The results of Section 2 

have been proved by Guralnick and Zieve and are included here with their kind 

permission. Some of this work was done while both of us were visiting the 
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2. P e r m u t a t i o n  p o l y n o m i a l s  

Let F be the finite field with q elements, where q is a power of a prime p. A 

polynomial with coefficients in F is called a p e r m u t a t i o n  p o l y n o m i a l  if it is 

a bijection from F onto itself. We write rod(q) to denote the minimal degree of 

a non-linear permutation polynomial over the field with q elements. Our proof 
of Theorem D yields that  ]P] < pmd(p)-I-1 if X is faithful and IP] <_ p2md(p)-i in 

general and that  the bound in the faithful case is best possible. The goal of this 

section is to obtain a precise estimation of md(p) that  allows us to claim that  

the bound in Theorem D is best possible in the faithful case for all but finitely 

many primes, i.e., we need to compute the exact value of md(p) for almost all 

primes. 

We remark that  if r does not divide p - 1 then the polynomial f ( x )  = x r E 

Fp Ix] is a bijection, so it is clear that  Theorem D follows from the bounds men- 

tioned in the previous paragraph. It is a consequence of a theorem of Dickson, 

that  appears as Theorem 84 of [9] (which actually goes back to Hermite for fields 

of prime order), that  the degree of a non-linear permutation polynomial over 

the field with q elements does not divide q - 1, so md(p) is at least the smallest 

number not dividing p - 1. In particular, md(p) can be arbitrarily large. 

The goal of this section is to prove that  md(p) = r, where r is the smallest 

prime that  does not divide p - 1, for almost all primes. First, we need a lemma, 

whose proof seems to have been known for a long time but for which there 

doesn't seem to be a reference. An excep t iona l  p o l y n o m i a l  over  ]~q is a 

polynomial f e Fq [x] for which the only factors of f ( x )  - f ( y )  e Fq [x, y] which 

are irreducible in K[x, y] are the scalar multiples of x - y ,  where K is an algebraic 

closure of Fq. It was proved by Cohen [6] that  every exceptional polynomial is 

a permutation polynomial, but we will not need this fact. 

LEMMA 2.1: If  f (X)  E Fq[X] is a non-exceptional permutation polynomial of 

degree d, then 

q + 3 - 2d < [2qX/2](d - 2)(d - 3)/2. 

In particular, q < d 4. 

Proof: Since ](x)  is non-exceptional, there is a polynomial R(x,  y) E Fq [x, y] 

such that  R(x,  y) divides f ( x )  - f ( y ) ,  R(x ,  y) is not a multiple of x - y and 
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R(x ,  y) is irreducible in K[x,  y], where K is an algebraic closure of Fq. Let D be 

the degree of R and N the number of pairs (a, b) C (Fq)2 such that  R(a,  b) = O. 

Notice that  D _~ d - 1, so by Corollary 2(b) of [17] we have that  

N >_ q + 1 - D - [2q1/2](D - 1)(D - 2)/2 >_ q + 2 - d - [2qU2](d - 2)(d - 3)/2. 

On the other hand, R(a,  b) = 0 can only occur if a = b (because f is a permu- 

tation polynomial), so the number N is the number of roots of the polynomial 

R(x ,  x) �9 Fq [x]. This polynomial is non-zero (otherwise x - y would be a divisor 

of R ( x , y ) )  and its degree is at most d -  1, so N < d -  1 and the result follows. 
| 

THEOREM 2.2: The  minimal  degree o f  a permuta t ion  polynomial  over the field 

with p elements is the smallest pr ime that  does not  divide p - 1 unless p E S = 

{7,211,421,631, 1051, 1471, 2311}. 

Proof: If r is the least prime not dividing p - 1, then as we have pointed out 

before, md(p) _< r. Let's suppose that  this inequality is strict and show that  

p E $ in this case. It is proved in [10] (see also Chapter 6 of [18]) that  r is 

the lowest degree of any non-linear exceptional polynomial over Fp, so it follows 

that,  under our assumption md(p) < r, a permutation polynomial of minimal 

degree is not exceptional and, by Lemma 2.1, md(p) > pl/4. Therefore, any 

prime less than pl/4 must divide p - 1. For p >_ 174, the number of primes less 

that  pl/4 is at least @1/4/ logp (see Corollary 1 in [25], for instance). Trivial 

estimates yield that  p _~ 234. Now, using a computer, it is easy to determine 

for which of these primes p, p - 1 is divisible by all the primes that  do not 

exceed pl/4.  The list of primes thus obtained can be further reduced taking into 

account the stronger inequality in Lemma 2.1 and the result of Dickson and 

Hermite. After these reductions only the primes in $ remain. | 

The polynomial x 4 + 3x is a permutation polynomial over F7, so p = 7 is a 

genuine exception to this theorem. It seems likely that  for the remaining primes 

p in $ the minimal degree is also the smallest prime that  does not divide p - 1. 

3. P r o o f  of  T h e o r e m  C 

The goal of this section is to prove Theorem C. We introduce first some notation 

that  will be maintained throughout this paper. 

Given a group G and g E G, we write clv(g) to denote the conjugacy class of 

g in G. If N is a normal subgroup of G, then the preimage in G of clG/g (gN)  is 
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the union of some conjugacy classes C 1 , . . . ,  Cn of G. If ~ E Irr(G/N) vanishes 

at gN and we view ~ as a character X of G, then we have that  X vanishes on all 

the conjugacy classes C 1 , . . . ,  Ca. In particular,  m(~)  < m(x) with an equality 

if and only if the classes of zeros of ~ lift to unique classes in G. It  follows that ,  

in general, m(G/N) <_ re(G). It  is also clear that  if N is a normal subgroup of 

a group G and xlN and x2N are not conjugate in G/N, then Xl and x2 are 

not conjugate in G. We will use these facts without further explicit mention. If 

S is a normal subset of G, we write kG(S) to denote the number of conjugacy 

classes of G contained in S. We simply write k(G) for the number  of conjugacy 

classes of G. 

We need the following easy lemma. 

LEMMA 3.1 : Let M be a normal  subgroup of a p-group P and H a subgroup 
of M with IM : HI = pn. Then 

k p ( M -  U Hg) >- n(p-  1). 
gEP 

Proof." Argue by induction on I MI, the case M = 1 being trivial. Take a 

minimal normal subgroup N of P inside M and apply the inductive hypothesis 

to the group P/N and the subgroups M/N and HN/N. The result is then clear 

if N _< H.  Otherwise N n H = 1 and we obtain (n - 1)(p - 1) classes inside 

M - UgcP HgN. Since N is central, the non-trivial elements in N provide us 

with p - 1 extra  classes in M - UgcP Hg, so the result follows. | 

Proof of Theorem C: The fact that  re(X) is a multiple o f p  - 1 can be proved 

by standard methods, noting that  if the exponent of P is pe then the Hall 

p ' -subgroup of the group of units of Z/pcZ acts fixed point freely on the set of 

conjugacy classes of zeros of X. 

Now we want to see that  m(x ) >_ (p + n)(p - 1). Of course we can suppose 

from the outset that  X is a faithful character.  Let H < P be a subgroup of 

index pn such that  X = AP for some linear character ,~ of H and M a maximal 

subgroup containing H.  Then X vanishes on P - Ug~p Hg, so by the previous 

lemma we have 

mO~ ) >_ k p ( P -  M) + k p ( M -  U Hg) >- k p ( P -  M) + (n -  1 ) ( p -  1). 
gEP 

If all the centralizers of the elements in P - M have order greater than p 2  

then P - M has at least p3 _ p2 classes and the result is clear. Otherwise, the 

centralizer of some element, say g, has order p2 so, by a well-known result of 
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M. Suzuki (see Satz III.14.23 in [11]), P is a p-group of maximal class. The 

case IPI = p3 is obvious (all the non-linear characters have degree p and vanish 

on exactly p2 _ 1 classes), so in the sequel we suppose that  IPI > p4. Then 

the second centre Z2 is abelian and, by Problem 6.11 of [13], ~( is a relative 

M-character  with respect to Z2. This means that  the subgroup H can be taken 

to contain Z2. Note that k p ( P  - M)  >_ p2 _ p ,  so we only need to produce p -  1 

classes of zeros inside Ugep Hg. We shall do this by proving that  X vanishes on 

Z2 - Z (Z denotes the centre of P) .  Let z e Z2 - Z. Since Cp(g) = (g)Z, it 

is clear that  [z, g] 7~ 1. On the other hand the restriction of ,~ to Z is not the 

principal character (because X = ,~P is faithful), so ~ = ,~([z,g]) is a primitive 

pth root of unity. Finally, we compute ;~(z). We have 

=  (zg) = = = 

and it follows that  X(z) = 0. | 

Note that  a consequence of the last theorem is that  the number of classes of 

zeros of any non-linear character ;g of a p-group P is at least p2 _ 1 and the 

equality can only hold if the p-group has maximal class and the degree of the 

character is p. It also follows from the proof that  if we assume in addition that  

X is faithful (and IPI >_ p4), then X vanishes on the p2 _ p conjugacy classes 

outside a certain maximal subgroup and on the p -  1 conjugacy classes that  are 

contained in Z2(P) - Z (P) .  If X is not faithful and its kernel is K then, as a 

character of P / K ,  X also vanishes on p2 _ 1 classes, which lift to unique classes 

in P.  This simply means that  for any zero x of X, all the elements in the coset 

x K  are conjugate. We will make use of these ideas later on. It was pointed 

out by Berkovich (see [4]) that  the number of zeros for p-groups that  are not of 

maximal class is at least p3 _ p2 (this is also clear from the preceding proof). 

4. C h a r a c t e r s  o f  p - g r o u p s  w i t h  f e w  c l a s s e s  o f  z e r o s  

First, we present examples that  show that  it is possible to have m(x)  = p2 _ 1 

for characters of 2-groups and 3-groups of arbitrarily large order. 

Take first any 2-group of maximal class P (of order at least 8) and a faithful 

irreducible character X. If C is the maximal cyclic subgroup of P,  then X can 

be induced from a linear character A of C and A has order ICI = 2 ~ (otherwise, 

~2 would not be faithful). For x E C we have that  ~((x) = A(x) + ~(x/) = ~ + ~ ,  

where c is a primitive o(x)-th root of unity and i depends on the group P.  In 

any case it happens that  c / is the opposite of ~ if and only if o(x) = 4, so the 
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zeros of X are exactly the elements of P - C and the two elements of C of order 

4, a set that  is the union of three conjugacy classes. 

Now, instead of just constructing the promised family of 3-groups, we shall 

show that  for any odd prime p there are p-groups (of maximal class) of arbitrarily 

large order having an irreducible character with exactly ( p -  1)! + p2 _ p  classes 

of zeros (8, for p = 3). This will show that  in general the order of a p-group P 

(or even the nilpotence class) cannot be bounded by a function of n(P) .  This 

example will also play a key role in the proof of Theorem D. 

Example  4.1: Let p be an odd prime and suppose P is a p-group with a maximal 

subgroup which is homocyclic of rank p - 1 and has exponent pC, say A = 

( x l , . . . ,  x ;_l) .  Assume also that  there exists an element g E P - A such that  

x ig = Xi+l for 1 _< i < p -  1 and xp_ l g  = x{ -1 . . . x ;11  . We claim that  any 

irreducible faithful character of P vanishes on exactly ( p -  1)!+ p2 _ p  conjugacy 

classes. Checking this requires some computations which we now sketch below. 

LEMMA 4.2: Let e l , . . . , e p - 1  be pnth roots of  unity adding up to - 1 .  Then 

they are the different p - 1 primitive pth roots of  unity. 

Proof." Apply to the relation 1 + E1 -~ " ' "  "~- s  = 0 the automorphisms in 

the Galois group of the field extension Q(c1, . . .  ,c ; -1) /Q.  One gets that  for 

�9 J = 0. NOw the coefficients any integer j coprime with p, 1 + c~ + -.- + c;_1 

of the polynomial l(x) = ( x -  ~1 )""  ( x -  Cp-1) can be computed by using 

Newton's formulas (see, for instance, p. 179 of [7]) and it turns out that  l(x) = 

X p - 1  --[- " ' "  -~- X + 1, SO the result is clear�9 | 

LEMMA 4.3: Let p be an odd prime number and define the following matr ix  in 

the indeterminates x l  , . . . , xp_~ : 

A ( x l , . . .  , X p _ l  ) 

x3 X p l  
x4 . . .  d xl  

X l  �9 �9 �9 Xp-- 3 Xp-- 2 

where d = - x l  . . . . .  Xp-1. The determinant of  this matr ix  defines a polynomial 

f ( x l , . . . ,  xp-1) with integer coefficients. Then 

(1) 
f ( x l , . . . ,  Xp-1) -= (--1) p(p-1)/2 ~ (Xl-F(1-F~)x2-F'' "-F(1-9~-F'' "-F~P-2)Xp_I). 

~P=I 

In particular, i f  c l , . . . ,  Cp-1 are integers, then 

f ( c l , . . .  ,Cp-1) ~ ( - - 1 ) P ( P - I ) / 2 ( C I  -[- 2c2 ' [ - " "  '~ ( p  --  1 ) C p _ l )  p - 1  (mod p). 
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Proof" Take any primitive pth root of unity 4. To calculate the determinant of 

A, note that  if we multiply the j t h  column by 4 + 4 2 + " "  + ~J and then sum these 

columns for j = 1 , . . .  , p -  1, we obtain a column whose entries are polynomials 

which are proportional to xl + (1 + 4)x2 + " "  + (1 + 4 + "'" + 4P-2)Xp-1 �9 We 

conclude that  all these linear polynomials for the various 4 divide f and so, 

except for a constant, their product is f .  To compute the constant simply 

evaluate in xl = 1, x2 . . . . .  Xp-1 = O. 

The congruence can be obtained by reducing the coefficients on both sides of 

(1) modulo a maximal ideal of the ring of integers of Q(4) (4 is a primitive pth 

root of unity) containing pZ. The point is that,  modulo this ideal, 4 becomes 

1. | 

Suppose now that  X is a faithful irreducible character of the group P in the ex- 

ample. Then )~ = )~P for some linear character A of A and, since )~ is faithful and 
(XlX  . . . .  o - ,  Xp-lJ is in the centre of P,  we have that  A((x l  x 2 . . . .  ~p-lJP-I~P j~ # 1. 

Now fix once and for all a primitive p e t h  root of unity c and take integers 

C 1 , . . ,  Cp- 1 such that  A(x~ 1 ~,,-1 �9 �9 �9 �9 xp_  1 ) = c cl~+' ' '+cP-lip-1.  Note that  the preced- 

ing remark simply says that  Cl + 2c2 + . . -  + (p - 1)%-1 ~ 0 (rood p). 

To simplify the expressions, we put C = (Cl,. . . ,Cp-1), X = ( i l , . . . , i p - 1 )  

and denote by M the ( p -  1) • ( p -  1) matrix with l 's  in the second upper 

diagonal, - l ' s  in the last row and zeros elsewhere. Then 

X ( x ~ '  . * . x i p - '  ) ----- s X C t  ( l  -~-s X ( M - I ) c t  ~- . . . -~- c X ( M p - ' - I ) C t )  
p - 1  

(Here I is the (p - 1) x ( p -  1) identity matrix and C t denotes the transpose 

matrix of C.) Lemma 4.2 implies that  x~l ' �9 �9 �9 Xp_ lzp-' is a zero of ~: if and only if 

X ( M  - I ) C  t - k i p  e-1 (mod pe),  

(2) 
X ( M  p-1 - I ) C  t =- k p _ l p  e-1 (modpe), 

where k l , . . .  ,k~-i  is a permutation of the numbers 1 , . . .  , p -  1. We can write 

this system more compactly as 

(3) X R -  x c t ( l , . . . ,  1 ) =  ( k l , . . .  , k p - 1 ) p  e-1 (rood p~), 

where R = A (c l , . . .  ,Cp-1).  Note that  C = - ( 1 , . . . ,  1)R, so (3) simplifies to 

(4) X R  + X R J  - ( k l , . . . ,  k p - 1 ) p  e - 1  (mod pe), 

where J is the (p - 1) • (p - 1) matrix all of whose entries are 1. By the last 

lemma, the determinant of R is coprime with p (remember that  Cl + 2c2 + . .  �9 + 
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(p - 1)Cp_l ~ 0 (rood p)), so the number of solutions of (4) is the same as for 

(5) Y ( I  T J) -- ( k l , . . . , k p - 1 ) p  e-1 (modpe). 

The solutions of this system are Yl -= 0 (mod pr Yi -= Yl + (ki - kl)p e-1 

(mod pC) for 2 < i < p -  1 (we notice that  at some point it is necessary to 

make use of the fact that  k l + . . . + k p - 1  ==- l + . . . + ( p - 1 )  = 0  (modp)).  

We conclude that  the number of solutions of any of the systems (2) to (5) is p, 

which means that  the number of zeros of X in A is p(p - 1)!. So X vanishes on 

( p -  1)[ classes inside A and also on the p2 _ p  classes that  make up P -  A. We 

find that  the total number of classes of zeros of X is ( p -  1)[ + p2 _ p. 

We work now toward a proof of Theorem D where we show that  the behaviour 

of the primes 2 and 3 is exceptional in the sense that  a p-group with an irre- 

ducible character vanishing on exactly p2 _ 1 conjugacy classes has bounded 

order for p _> 5. In the proof of the next lemma we make use of the fact that  

the exponent of the derived subgroup of a p-group of maximal class and order 

at most pp+l is p (see [3]). We have made the rest of the proof self-contained 

although it could be simplified by using some additional results from the theory 

of p-groups of maximal class. 

LEMMA 4.4: Let M be an abelian p-group of order at most pP with a subgroup 

Mo such that M/Mo  is cyclic. Suppose that M has an automorphism a of order 

p which fixes exactly p dements  in M,  none of which, except for the identity, 

lies in Mo. Then there exist elements Xx,. . . ,  xr in M such that M is the direct 

product of the subgroups (xi) and one of the following happens: 

(i) M is elementary abelian, 21//o = (Xx,... ,xr-1) and x~ = xix~+l for 

1 < i < r (put Xrq- 1 : 1 ) .  

(ii) All the elements xi have order p, except for x l ,  which has order p2, 
c~ lp [01" Mo = ( x 2 , . . . , x r ) ,  x~ = xixi+l for 1 <_ i << r - 1  and x r = XrX 1 

some (l,p) = 1. 

Proo~ The semidirect product P = (a} ~< M is a p-group of maximal class 

of order at most pp+l, so the exponent of pr is p and, since Pr _< M, P~ is 

elementary abelian. We have pt <_ f~l (M) _< M <: P,  where 

f~l(M) = {x E M i x  p = 1}. 

Since ]P :  M[ = p and IP :  P'[ = p2, either P '  = f t l (M) or else, f~l(M) = M. 

We deal first with the latter case, that  is, when M is elementary abelian. Then 

M = Mo x Z(P) ,  whence P '  = [M, a] = [M0, a]. Of course we can assume that  
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IM I = pr > p, so that P '  r 1 and Z i P  ) ~ P '  = [Mo,(~]. Fix a generator Xr of 

Z ( P)  and take xr-1 E Mo such that  xr = [Xr_l,C~]. The subgroup generated 

by xr-1 and Xr is normal in P so, unless its order is greater than pr-1,  it is 

contained in p l  and we can pick xr-2  E M0 such that xr-2 = [x~-l,(~]. Arguing 

a (xr+l 1, as this way we can find elements x l , .  �9 x~ such that  x i = xixi+l = 

usual). Now we only need to prove that  M is generated by the xi, but this 

is clear because otherwise there would exist a largest 1 < i < r such that  

xi E ( x i + l , . . . ,  xr) and then 

x i + l  = [xi ,  e xr) ,  = xr) ,  

against the choice of i. 

We deal finally with the second case PI = ~ I (M) .  Then M is not elementary 

abelian but does have a maximal subgroup which is elementary abelian, namely 

pt ,  so M is the direct product of a cyclic subgroup of order p2 and subgroups of 

order p. It follows that  M~ has order p and M p = Z(P) .  We apply the previous 

case with f~l(M) and f~l(M) N M0 playing the role of M and Mo, respectively 

(note that  Mo ~ ~ I (M)  because Z ( P )  is contained in f~l(M) but not in Mo). 

We conclude that  there exists a minimal set of generators of f~l (M), x 2 , . . . ,  x~, w 

such that  f~l(M) N M0 = (x2 , . . . , x~)  and x~ -- xixi+l for 2 _~ i < r - 1, 

x~ = xrw and w ~ = w. Since x2 e f~I(M) = P '  = [M, a], there exists Xl E M 

such that  x~ = xlx2 and xl • f~l(M) (otherwise, x2 = [Xl,(~] E (x3 , . . .  ,Xr,W), 

which is impossible). Thus the order of xl is p2 and x p E Z (P)  = (w) (because 

lp with (l,p) = 1. | x~ is fixed by a),  whence w = x 1 

We are now ready to prove the faithful case in Theorem D. 

Proof of Theorem D, faithful case: We know that  P is a p-group of maximal 

class, that  the degree of X is p and that  X = AP for A a linear character of a 

maximal subgroup M, which is abelian (M t is contained in the kernel of X and 

so is trivial). We split the proof in two cases. First we suppose that  IPI _> pp+l. 

As is usual when dealing with p-groups of maximal class, we shall denote by Pi, 

i k 2, the i th term of the lower central series. Then P2/Pp+I has order pp-1 

and exponent p (by [3]) and, being inside M/Pp+I,  is abelian. We conclude that  

the rank of M is at least p - 1. Now we take an elementary abelian subgroup 

A _< M of rank p - 1 and normal in P and set L = (glA, where g is an element 

outside M. Since L is not abelian, X restricts irreducibly to it, so it follows 

from Example 4.1 (the particular case when A is elementary abelian) that  XL 

vanishes on ( p -  1)! classes in A (at this point, the distinction between L-classes 

and P-classes is immaterial). Taking into account the classes in P - M, we 



Vol. 142,  2004  C O N J U G A C Y  C L A S S E S  O F  Z E R O S  O F  C H A R A C T E R S  175 

conclude that  )/vanishes on at least ( p -  1)! +p2 _ p  classes, which is impossible 

because this number is greater than p2 _ 1 for p _> 5. 

We consider now the case IPI _< pP. We apply the previous lemma to the group 

M, the subgroup Mo = Ker A and the automorphism a induced by conjugation 

by an element g E P - M. According to the lemma two cases can occur. In the 

first one M is elementary abelian and there exists a minimal set of generators 

g (Xr+ 1 ---- 1) and Mo = KerA @ 1 , . .  ,x~- l ) ,  Xl, �9 �9 �9 xr such that  x i = x i x i +  1 --~ . 

that  is A(xi) = 1 for 1 _< i < r and A(xr) = c, a primitive pth root of unity. 

Since ;~ only vanishes on p~ - 1 classes, the only zeros in M are the elements in 

Z2(P) - Z(P)  = (Xr-1, x~) - (xr) (we can suppose of course that  IPl _> p4). 

Routine computations show that 

1 . -  �9 ) = 

(we adhere to the usual convention of setting (~) = 0 if k > j) .  

For i l , . . . ,  iT fixed elements in Fp, we define the polynomial 

x ) (1) r -  1 + " "  +i t -1  +~r, 

where (~), 1 _< i < p, is the polynomial x(x - 1) . . .  (x - i + 1)/i! e Fp[X]. We 

note that  
. . . ) = + . . .  + 

i,- is a zero of ) / i f  and only if ~ is a permutation polynomial on Fp (by S O  X ~  1 ' * " X r 

Lemma 4.2). It is clear that  the map assigning to each element x~ ~ -..  x~ " the 

corresponding polynomial ~ is a bijection between M and the set of polynomials 

of degree at most r - 1. Under this map linear polynomials correspond to the 

elements in the difference (Xr-1, Xr) -- (X~), that  is, to the zeros of ) / in  M. We 

conclude that,  apart  from linear polynomials, permutation polynomials must 

have degree at least r, so r _< md(p) and IPI = p~+l _< p m d ( p ) + l .  

We consider now the second possibility in Lemma 4.4 and maintain the 

This time A(x~ ~ . . .  x~") = e h ,  where c is a primitive p2th root notation there. 

of unity and 

 g-J 1 . . .  = 

i1 iv  is a zero of X if and only if the polynomial SO X 1 �9 �9 " X r 

r  + i r - x ( r X l )  + ' " + i ~ ( 1 )  
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is a permutat ion polynomial. Since )~ has no more zeros in M than those in 

(xr, w) - (w), we conclude that  non-linear permutation polynomials must have 

degree at least r + 1, so r _~ md(p) - 1 and [PI = pr+2 < pmd(p)+l. | 

It is clear from the above proof that  the bound obtained is best possible. 

Actually, with some routine extra work one could classify the p-groups with a 

faithful character vanishing exactly on p2 _ 1 conjugacy classes. 

To prove the general bound in Theorem D we need to recall some results 

from the theory of p-groups of maximal class. If P is such a p-group and 

]PI = P~ >- p4, we define the maximal subgroup P1 as the centralizer in P 

of P2/P4. Then P is called e x c e p t i o n a l  if there exist i , j  >_ 1 with i + j _< 

n - 1 and [Pi, Pj] = Pi+j. Otherwise P is called n o n - e x c e p t i o n a l ,  i.e., when 

[Pi,Pj] <_ Pi+j+l for all i , j  >_ 1. In the former case, P has exactly ( p -  1) 2 

conjugacy classes of size pn-2 whereas, in the latter, the number of such classes 

is p2 _ p (see [3]). 

LEMMA 4.5: Let P be a non-exceptional p-group of maximal class of order 

pn >_ p4 and x E Pj - Pj+I for some 1 ~ j ~_ n - 2. Then the elements in the 

coset xPj+2 are a11 conjugate if  and only if Cp (x) = Pn-j-1.  Moreover, in that 

case n <_ 2j + 1. 

Proof: Let us denote by C the conjugacy class of x. We begin noting that  

C C_ xPj+l but C (s xPj+2 (because x is central modulo Pj+I but not modulo 

Pj+2). The cosets xPj+l and xPj+2 have sizes pn-j-1 and pn-j-2, respectively 

and the size of C is also a power of p. Then it is clear that  the inclusion 

xPj+2 C_ C amounts to the equality xPj+l = C. Since one of the inclusions here 

is always true, we conclude that  this equality holds if and only if ]C] = ]Pj+I] 

or, in terms of centralizers, ICp(x)] = pj+l. 

On the other hand, P is non-exceptional so [x, Pn-j-1] <_ [Pj,Pn-j-1] <_ 

Pn ---- 1, that  is Pn-j-1 (_ Cp(x) and [Pn-j-l] -'- pj+l ,  SO the first part  of 

the lemma follows directly. In particular, under the hypothesis of the lemma, 

x E C p ( x ) = P ~ _ y _ I .  B u t x E P j - P j + l ,  s o n - j - l _ < j ,  t h a t i s n _ < 2 j + l .  
| 

Proof of Theorem D, general case: Set K -- Ker X, which can be supposed to 

be non-trivial so that  [PI = pn ~_ p4. By the faithful case of this theorem we 

know that  pS = ]P/K[ ~_ pmd(p)+l. The character X vanishes outside a maximal 

subgroup M of P and also on at least p - 1 classes inside M. But the number 

of classes in P - M is at least p2 _ p, so no more classes can exist here and, 
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in addition, the size of all of them must be pn-2. As indicated before, this can 

only happen if P is a non-exceptional p-group of maximal class. Viewed as a 

character of P / K ,  X also vanishes on p2 _ 1 classes so each of them must lift 

to a single conjugacy class of P,  which simply means that  all the elements in 

the coset x K  are conjugate if x is a zero of )~. Now we take x C Ps-2 - Ps-1, 

which modulo K is in Z 2 ( P / K )  - Z ( P / K )  and so is a zero of X. Then by the 

previous lemma we conclude that  IPI < p2S-3 and therefore, IPI _< p2md(~)-i 

because s <_ md(p) + 1. | 

In the next example we construct p-groups for p _> 5 which possess non- 

faithful irreducible characters vanishing on p~ - 1 conjugacy classes. However, 

they do not prove that  the general bound in Theorem D is best possible. 

Example 4.6: Let r be an odd number with r <_ md(p). We claim that  there 

exists a p-group P of order pr+2 with an irreducible character X such that  its 

kernel has order p and it vanishes on p2 _ 1 classes. We start  with the group 

H = {g/ ~< A, the semidirect product between the elementary abelian group 

A = ( x l , . . . ,  Xr} of rank r and the cyclic group (g /o f  order p, where the action 

g (Xr+l 1). Then all we need is a non-exceptional is given by x i = xixi+l = 
group of maximal class P of order pr+2 such that  P/P~+I is isomorphic to H 

and [Pr-1, P1] = Pr+l (this is simply a reformulation of the condition that  all 

the classes in Z2(P/Pr+I) - Z(P/P~+I) lift to unique classes in P).  Instead 

of trying to find such a group it is easier to construct a Lie algebra over Fp of 

maximal class L; of dimension r + 2 such that  [L;~, s < s for all i , j  > 1, 

[s •1] • s and f~/s has a basis e l , . . . ,  er, f satisfying the relations 

[ei, ej] = 0 and [ei, f] = ei+l (e~+l = 0). Of course, the ideals s  are defined 

similarly to the subgroups Pi but in the context of Lie algebras. Then the p- 

group P corresponding to s under the Lazard correspondence satisfies all the 

conditions required. Note that  Lazard's correspondence can be used since the 

nilpotence class of s should be r + 1 _< md(p) + 1 _< p - 1. 

To construct our Lie algebra s we consider a vector space with a basis 

e l , . . . ,  er, w, f and define a Lie product  by setting [ei, er_~] = (-1)iw,  [ei, f] = 

ei+l for 1 _< i < r and [e~, f] = w (the rest of the products among the generators 

are defined to be zero). To check that  this actually defines a Lie algebra struc- 

ture, notice first that  the relations for e l , . . . ,  er, w define a Lie algebra structure 

of nilpotence class 2 (the relations are consistent because r is odd) and f acts 

on it as a derivation. 

Since we have proved that  md(p) is the smallest prime that  does not divide 

p -  1 for almost all p, this example shows for almost all primes we cannot 
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remove the hypothesis that  the character is faithful if we want to obtain the 
bound IPI _< prod(p)+1. 

Unfortunately, we have been unable to settle the following question for p _> 5. 

QUESTION 4.7: What is the smallest integer n = n(p) such that there are p- 

groups of arbitrarily large order with an irreducible character with n conjugacy 

classes of zeros? 

Our results show that  p2 _ 1 ~ n(p) < (p - 1)! + p2 _ p. 

5. B o u n d i n g  t h e  o r d e r  of  a p - g r o u p  P in t e r m s  o f  m(P) 

In this section we show that  the order of a p-group can be bounded if all its 

irreducible characters vanish on at most a fixed number of classes. We need 

one lemma. Recall that  if P is a p-group, the c o b r e a d t h  of P is defined as 

cb(P)  = minzcp ]Cp(x)]. 

LEMMA 5.1 : The cobreadth of a p-group P cannot exceed 2n(P) .  

Proof: Write ]PI = pn and let X E Irr(P)  be non-linear. As before, there 

exists a (normal) subgroup M of index p in P such that  ;~ is induced from 

some character of M. In particular, ) /vanishes on the pn _ pn-1 elements of 

P -  M. Since X vanishes on m(;~) conjugacy classes, we deduce that  the number 

of conjugacy classes of P - M  cannot exceed m(x).  Thus, the average size of the 

conjugacy classes of P contained in P - M is at least (pn _pn -1 ) / m(x )  and the 

same thing must happen for the size of one of these classes. This means that  for 

some element in P -  M the order of the centralizer is at most p~_lm(x) <_ 2re(X) 

and the result follows directly. | 

Finally, we show that  the order of a non-abelian p-group P can be bounded 

in terms of m(P).  

Proof of Theorem B: Let p be an irreducible character of P of maximal degree 

among all the irreducible characters. By Theorem 12.26 of [13], there exists an 

abelian subgroup B of P of index at most ~(1) 4. By Theorem 5.1 of [22], we 

have that  P has a normal abelian subgroup of index at most ~(1) s. By Theorem 

C the degree of ~ is bounded by a function of m(~),  so P has an abelian normal 

subgroup with index bounded by a function of the number of classes of zeros of 

an irreducible character of maximal degree and consequently also by a function 

of m(P).  

Let A be an abelian normal subgroup of P of maximal order and notice that,  

by the preceding discussion, the index of A is bounded by a function of m(P).  
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Put  K = [A, P]. Since A is not central, we have that  K > 1 and we can take a 

maximal subgroup L of K such that  L <3 P.  Set Z/L = Z(P/L). Since K > L, 

we have that  A N Z < A. Also, since K/L has order p, K _< A n Z. We write 

-fi = P/L and use the bar convention. Note that  A _< Z2(P). Thus 

and we deduce that  A/(A n Z) has exponent p. 

By Lemma 5.1 there exists x E P such that  ]Cp(x)I is bounded by some 

function of re(P). We can view x as an automorphism of A, and viewed as such 

an automorphism its order cannot exceed I P : AI, which is bounded in terms of 

m(P) .  It follows that  the rank of A is bounded by some function that  depends 

only on m(P) (by Corollary 2.7 of [16], for instance). Since A/(A N Z) has 

exponent p, this means that  the order of A/(A N Z) is similarly bounded and 

the same thing happens for the index IP : A N Z]. 

Let N be a normal subgroup of P such that  N <_ A and IN/A n Z] = p. 
Note that  IP : N] is bounded in terms of re(P). Pick x E N - ( A n  Z) and put 

C/L = Cp(Z). Since x is not central modulo L, we have that  T ~ [5, P] ~ K,  

whence [5, P] = K has order p. 

Since N is not contained in Z, P does not act trivially on N/L and does not act 

trivially on Irr(N/L) either. Let A be an irreducible character of N/L that  is not 

P-invariant. Since N/K is central in P/K, we deduce that  p = AK/L ~ 1K/L. 
Now, let X E Irr(PlA ), y E N - (A n Z) and g E P such that  [g, y] r L. Then 

= x ( y  = x (y )u ( [g ,  y]) 

and it follows that  X(Y) = 0. 

Write IN I = pk. Since A is abelian the size of any conjugacy class contained 

in N cannot exceed ]P : A]. We have then that  

pk _ pk-1 

IP:AI 
<_ kp(N - (A N P)) < m(x) <_ m(P), 

and we deduce that  pk _ pk-1 is bounded in terms of m(P). This implies that  

k is bounded in terms of m(P). Since p and [P : N[ are also bounded in terms 

of m(P) ,  the result follows. I 
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6. B o u n d i n g  t h e  d e r i v e d  l e n g t h  

First, we prove Theorem E. This is an immediate consequence of the following 

theorem of A. Shalev. 

THEOREM 6.1: The derived length of a p-group is bounded in terms of the 

cobreadth. 

Proof: This is Theorem A' of [26]. The proof there also gives an explicit bound. 
| 

Proof of Theorem E: This follows from Lemma 5.1 and Shalev's Theorem. 
| 

Our next result shows that  it is not possible to extend Theorem E to solvable 

groups. It also shows that  it is not possible to bound [G : F(G)[ in terms of 

n(a). 

THEOREM 6.2: For any integers m and l, there exists a monomial group G 

with a Sylow tower and X E Irr(G) such that dl(G) > m, [G : F(G)[ > l and X 

vanishes just on one conjugacy class of G. 

Proof'. Let n be an integer such that  the derived length of the group U = U,~(q) 

of upper unitriangular matrices of size n over the finite field with q elements 

is greater than m (n doesn't actually depend on q). Let r _> max{/ ,n} be a 

prime number and ~ a generator of the group of units U(Z / rZ) .  By Dirichlet's 

Theorem, there exists a prime of the form p = a + kr for some positive integer 

k. Thus we have L/(Z/rZ)  = (~). Let q = pr-1. Since q --- 1 (mod r), F = ]~q 

contains r different r th  roots of unity. We choose n such roots ~1 = 1, ~2 = 

~, ~3, . . . ,  ~n. Let a be the diagonal matrix d iag(~l , . . . ,  ~,~). Note that  the order 

of a is r and that  a acts fixed point freely on U by conjugation. Of course, we 

can view the semidirect product L = (a) ~ U as a subgroup of the group of 

invertible upper triangular matrices Tn(q). The Probenius automorphism of F 

induces an automorphism ~ of L of order r - 1. Put  G = (~p) ~< L. 

It is clear that  G has a Sylow tower. Now we want to see that  G is an M- 

group. First, we define certain subgroups of U. For every 1 _< i < j _< n, let 

H~,j be the subgroup of U formed by the matrices whose non-diagonal entries in 

the first j - 1 columns and in the last n - i rows of the j t h  column are zero, the 

rest of the entries above the diagonal being arbitrary. (Note that H1,2 = U.) 

Conveniently ordered, the subgroups Hi,j form an increasing sequence of F-  

algebra groups (see [14] for the definition of an algebra group) and adding the 
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subgroups 1, L and G we obtain a series of normal subgroups of G. By Theorem 

A of [14], the restriction of a character of some subgroup Hi,j to the preceding 

one in the normal series is either irreducible or splits as the sum of q different 

irreducible characters. Since G/L is cyclic and L/U has prime order, we can 

refine our normal series to a normal series where all the consecutive quotients 

between U and G have prime order. In particular, it also holds for these terms 

that  the restriction of a character to the preceding subgroup is either irreducible 

or the sum of different irreducible characters. Now we can apply Lemma 1.2 of 

[27] to deduce that  G is an M-group. 

Write C = (~p) and S = (a), so that  G = CSU. Since C acts Frobenius on 

S and S acts Frobenius on U, there exists a unique conjugacy class of elements 

of order r and all other elements of G are #-elements. Thus, it suffices to show 

that  there exists a non-linear character X E Irr(G) such that  X(x) ~ 0 for any 

r~-element x. Actually, we shall find X as a character of the group J = G/H2,3. 

Note that  all we need to worry about is that  X does not vanish on the r '-elements 

of J ,  since then this condition will be automatically satisfied by the #-elements 

of G. 

We can identify J with CSF, where the action of a on F is given by multi- 

plication bye2  = ~ .  Let H = C F a n d N  = S F .  W r i t e F = P •  w h e r e P  

is the prime subfield of F and let A = 5 • 1Q, where 5 is a non-principal linear 

character of P.  Since S acts h 'obenius on F and C fixes P,  we deduce that  

Ij(A) = H.  Now, A extends to H and then induces to an irreducible character 

X of J.  By Lemma 2.1 of [21], for instance, we know that  X(x) ~ 0 for all x C F.  

Also, either by an easy calculation or by Theorem 13.6 of [13], one can see that  

X does not vanish on any of the elements of H - F.  This means that  X does not 

vanish on any element of the Hall #-subgroup H and so it does not vanish on 

any #-element at all, which is what we needed. | 

Now we show that  Conjecture F holds for supersolvable groups. Since in a 

supersolvable group G the quotient G/F(G) is abelian, there is an irreducible 

character that  is induced from some character of F(G) (by Proposition 19.17 of 

[12]). In particular, it vanishes on G - F(G). Now, it is clear that  G - F(G) has 

at least IG : F(G)I - 1 conjugacy classes of G and it follows that  IG : F(G)I <_ 

re(G) + 1. So we just need to bound the derived length. In order to achieve 

this, we need the following result. Given an integer n, w(n) is the number of 

prime divisors (counting multiplicities) of n and for any group G, we define 

w(G) = max{~(X(1)) I X E Irr(G)}. 

THEOREM 6.3: Let G be a supersolvable group. There exist constants E1 and 
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E2 such that dl(G) _< E1 logw(g)  + E2. 

Proof." Since G is supersolvable, we have that  G r <_ F(G). There exist a prime 

p and P C Sylp(F(G)) such that  dl(P) = dl(F(G)).  Let pn be the largest 

degree of the irreducible characters of P.  As we have done already in the proof 

of Theorem B, P has a normal abelian subgroup A of index at most pSn. Thus 

the derived length of P/A is logarithmically bounded in terms of n (using a 

well-known theorem of P. Hall). Since n _< co(G) and dl(G) _< dl(P) + 1, the 

result follows. | 

PROPOSITION 6.4: Let G be a supersolvable group. There exist constants C1 
and C2 such that 

dl(G) _< C1 logm(C) + C2. 

Proof: First note that  the argument in Lemma 3.1 proves that  if G is a su- 

persolvable group and H _< G has index n, then ka(G - [.Jgca Hg) >> w(n). 

Now, using the fact that  supersolvable groups are M-groups, we have that  

rn(x) _> co(X(1)) for any ~( E Irr(G), so re(G) >_ co(G) and the result follows 

from the previous theorem. | 

In view of this proof, it would suffice to obtain a lower bound for 

ka(G - [.J~co Hg) in terms of co(IG : HI) in order to obtain a bound for the 

derived length of an M-group G by re(G). However, this is not possible. One 

can take the semilinear group G = F(q) for any power q of a prime p and H a 

Hall p'-subgroup of G. Since G is a Frobenius group there is only one conjugacy 

class of non-identity elements disjoint with H.  However, it might be true that  

such a bound exists if we assume in addition that  a (linear) character of H 

induces irreducibly to G, but we have been unable to prove this. 

Next we prove Theorem H. Note that  a consequence of Theorem H is that  if 

re(G) = 2 and G is solvable then dl(G) _< 3. 

Proof of Theorem H: It is not difficult to check that  if G belongs to one of 

the families (i)-(v), then m(G) = 2. Conversely, suppose that  re(G) = 2. By 

Theorem 1.1 of [2], we may assume that  there exist A and Z both of them of 

order at most 2 such that  G/Z = A x F, where F is a Frobenius group with 

complement of order 3 and nilpotent kernel of class < 2. We want to see that  

G is the symmetric group $4 or a Frobenius group with complement of order 3 

and abelian kernel. 

First, suppose that  the Fitting height of G is greater than 2. Then Lemma 5 

of [24] yields that  G ~ $4, so we may assume that  G is metanilpotent. 



Vol. 142, 2 0 0 4  CONJUGACY CLASSES OF ZEROS OF CHARACTERS 183 

Write F = C ~ K ,  with C = (x} cyclic of order 3 and K nilpotent of class 

_< 2. Put  J = AF = ACK. Note that  A acts trivially on C. We want to prove 

that  A = 1 and K is abelian. 

Suppose first that  K is not abelian. Let H be a maximal  subgroup o f / x  "1 

normal in K and let p E Irr(K/H) with #(1) > 1. Write Y / H  = Z(K/H) .  It  

is clear that  I K : YI -> 4. By Theorem 7.5 of [12], # vanishes on K - Y. Since 

F is a Frobenius group, ~ = #F E Ir r (F) .  Assume first that  ~ extends to an 

irreducible character X of J .  Then XK = #+#z  +px 2 vanishes on K -  U~=0 YX', 

which is a non-empty set. Since X also vanishes on the two conjugacy classes 

that  make up F - K ,  we deduce that  m(x) > 2, a contradiction. 

Thus, we may assume that  A > 1 and ~g E I r r (J ) .  But now we have that  

m(p J) > k j ( J  - K)  > 2, another  contradiction. We deduce tha t  K is abelian. 

Next, we prove that  A acts trivially on K.  Otherwise, there exists a linear 

character # of K whose inertia group in A K  is K.  Since CK is Probenius, we 

have that  the inertia group of # in CK is K too. We conclude that  #d E I r r ( J )  

and vanishes on J - K.  Since this normal subset has more than two conjugacy 

classes, we have reached another  contradiction. This means that  J = A x F.  

Now, re(J) = 2 implies tha t  A = 1. 

We have that  G/Z is a Frobenius group with complement of order 3 and 

abelian kernel. Take a non-linear irreducible character r of G/Z and gZ an 

element of any of the two conjugacy classes of zeros of r  Then gZ splits into 

IZI conjugacy classes of zeros of r when viewed as a character of G. Hence, we 

have that  Z = 1 and G belongs to the family (v), as desired. I 

7. Bounding the Fitting height 

We begin with the proof of Theorem A. We need the following results. 

THEOREM 7.1: Let G be a solvable group. Then there exists # E Irr(Flo(G))  

such that # a  E Irr(G).  Furthermore, if IGI is odd, then there exists T E 

Irr(F3(G)) such that r a E Irr(G) and if A E I r r (F(G))  lies under 7, then 
A F2(a) E I r r (F2(a) ) .  

Proof: These are Theorems C and D of [20]. I 

If  a group G acts on a module V, we write r(G, V) to denote the number  of 

orbits of the action of G on V. 
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THEOREM 7.2: Assume that a solvable group G acts faithfully and completely 

reducibly on a finite module V. Then dl(G) _< D1 loglogr(G, V) + D2 for some 
constants D1 and D2. 

Proof." If G acts irreducibly on V, then this is Theorem 2.4 of [15]. Thus, we 

may assume that V = 1/'1 • V2 for non-trivial G-modules V1 and V2. Arguing by 

induction on IGV], we deduce that 

dl(G) = max{dl(G/Ca (V1)), dl(G/CG(V2))} 

_< max{D1 loglogr(G/Ca(V1), V1) -[- D2, 

n~ loglogr(G/Ca(V2), V2) + D2} 

_<D1 loglogr(G,  V) + D2, 

as desired. | 

The following result is Theorem A. 

THEOREM 7.3: Let G be a solvable group. Then [G : Flo(G)[ is bounded in 

terms of re(G) and there exist real numbers C1 and C2 such that 

h(G) <_ C~ log log m(G) + C2. 

F~,rthermore, if [Fxo(G)[ is odd then [G: F(G)[ is bounded in terms of re(G). 

Proof'  First, we assume that G is an arbitrary solvable group. Certainly, we 

may assume that F10(G) < G. By Theorem 7.1, there exists X E Irr(G) such 

that X(x) = 0 for all x E G - Flo(G). Hence, we have that 

m(a) >_ ka(a  - Flo(a)) >_ k(G/Flo(a)) - 1 

and the first assertion follows from [23]. 

Now, we write G = G/Flo(G). By Gaschutz's Theorem (see [11]), 

U = G/F(G) ~- G /Fn  (G) 

acts faithfully and completely reducibly on V = F(G)/'~(G). It is clear that 

k(G) >_ k(G/a2(G)) >_ r(U, V). 

We deduce that m(G) >_ r(H, V) - 1. Using Theorem 7.2, we have that 

h(G) = h(G/Fu (G)) + 11 _< dl(H) + 11 ~ n l  loglogr(U, U) + D2 + 11 

_< D1 loglog(m(G) + 1) + D2 + 11 _< D1 loglogm(G) + D~. 
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Finally, we assume that  [F10(G)[ is odd and we want to bound [G : F(G)[.  By 

Theorem 7.1, there exists X1 E Irr(G) such that  ~(l(X) = 0 for all x E G - F l o ( G ) .  

Applying Theorem 7.1 to F10(G) and Flo(G) /F(G) ,  we can find characters 

~2, ~3 E Irr(Flo(G)) such that  ~2(x) = 0 for all 

x �9 ( F 1 0 ( a )  - F3(a ) )  U - F ( G ) )  

and ~3(x) = 0 for all x �9 F3(G) - F2(G). If we take X2 �9 Irr(G]~2) and 

Ha �9 Irr(G[~3), we can conclude that  for all x �9 G - F(G)  at least one of the 

three characters X1, X2 or X3 vanishes at x. Now, it suffices to argue as in the 

first paragraph to complete the proof of the theorem. | 

We conclude with the proof of the following special case of Conjecture G. 

THEOREM 7.4: Let X be an irreducible character of  a solvable group G with 

exactly one conjugacy class of  zeros. Then the Fit t ing height o f  G does not 

exceed 5. 

Proof: Let N be the normal subgroup of G generated by the conjugacy class of 

zeros of X. By [28], we know that  G / N  t is a doubly transitive Frobenius group 

whose kernel is N / N  t. Also, N / N  ~ is an elementary abelian group and N is a 

Camina group with respect to N ~. E. M. Zhmud also proved that  the Sylow 

p-subgroups of N are Camina groups. By [28], their nilpotence class does not 

exceed 3. Now, we can use Theorem 3 of [5] to deduce that  the Fitting height 

of N is at most 2. 

We have that  G / N  acts transitively on the non-trivial elements of N / N  ~ and 

using Theorem 6.8 of [19], we deduce that  the Fitt ing height of G / N  is at most 

3. Thus, h(G) _< 5, as desired. | 

References  

[1] Y. Berkovich and L. Kazarin, Finite groups in which the zeros of every non- 

linear irreducible character are conjugate modulo its kernel, Houston Journal of 
Mathematics 24 (1998), 619-630. 

[2] M. Bianchi, D. Chillag and A. Gillio, Finite groups in which every irreducible 

character vanishes on at most two conjugacy classes, Houston Journal of 
Mathematics 26 (2000), 451-461. 

[3] N. Blackburn, On a special class of p-groups, Acta Mathernatica 100 (1958), 
45-92. 



186 A. MORETO AND J. SANGRONIZ Isr. J. Math. 

[4] D. Chillag, On zeroes of characters of finite groups, Proceedings of the American 
Mathematical Society 127 (1999), 977-983. 

[5] D. Chillag, A. Mann and C. M. Scoppola, Generalized Frobenius groups II, Israel 
Journal of Mathematics 62 (1988), 269-282. 

[6] S. D. Cohen, The distribution of polynomials over finite fields, Acta Arithmetica 
17 (1970), 255 271. 

[7] P. M. Cohn, Algebra, Vol. 1, Wiley, New York, 1982. 

[8] R. Dark and C. M. Scoppola, On Camina groups of prime power order, Journal 
of Algebra 181 (1996), 787-802. 

[9] L. E. Dickson, Linear Groups with an Exposition of the Galois Field Theory, 
Dover, New York, 1958. 

[10] M. D. Fried, On a conjecture of Schur, The Michigan Mathematical Journal 17 
(1970), 41-55. 

[11] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1967. 

[12] B. Huppert, Character Theory of Finite Groups, deGruyter, Berlin, 1998. 

[13] I. M. Isaacs, Character Theory of Finite Groups, Dover, New York, 1994. 

[14] I. M. Isaacs, Characters of groups associated with /~nite algebras, Journal of 
Algebra 177 (1995), 708-730. 

[15] T. M. Keller, Orbits in t~nite group actions, in Groups St. Andrews 2001 in 

Oxford, Cambridge University Press, Cambridge, 2003. 

[16] E. I. Khukhro, p-Automorphisms of Finite p-Groups, Cambridge University Press, 
Cambridge, 1998. 

[17] D. B. Leep and C. C. Yeomans, The number of points on a singular curve over a 

tlnite tield, Archiv der Mathematik 63 (1994), 420-426. 

[18] R. Lidl, G. L. Mullen and G. Turnwald, Dickson Polynomials, Wiley, New York, 

1993. 

[19] O. Manz and T. R. Wolf, Representations of Solvable Groups, Cambridge 

University Press, Cambridge, 1993. 

[20] A. Moret6 and T. R. Wolf, Orbit sizes, character degrees and Sylow subgroups, 

Advances in Mathematics, to appear. 

[21] G. Navarro, Zeros of primitive characters in solvable groups, Journal of Algebra 

221 (1999), 644-650. 

[22] K. Podoski and B. Szegedy, Bounds in groups with finite abelian coverings or 
with finite derived groups, Journal of Group Theory 5 (2002), 443-452. 

[23] L. Pyber, Finite groups have many conjugacy classes, Journal of the London 
Mathematical Society 46 (1992), 239-249. 



Vol. 142, 2 0 0 4  CONJUGACY CLASSES OF ZEROS OF CHARACTERS 187 

[24] G. Qian, Bounding the Fitting height of a solvable group by the number of zeros 

in a character table, Proceedings of the American Mathematical Society 130 
(2002), 3171-3176. 

[25] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime 

numbers, Illinois Journal of Mathematics 6 (1962), 64-94. 

[26] A. Shalev, On a/most fixed point tree automorphisms, Journal of Algebra 157 
(1993), 271-282. 

[27] B. Szegedy, On the characters of the group of upper-triangular matrices, Journal 

of Algebra 186 (1996), 113-119. 

[28] E. M. Zhmud, On finite groups having an irreducible character with one class of 

zeros, Soviet Mathematics Doklady 20 (1979), 795-797. 


